The Exponential Diophantine Equation 2x + by = cz
نویسندگان
چکیده
Let b and c be fixed coprime odd positive integers with min{b, c} > 1. In this paper, a classification of all positive integer solutions (x, y, z) of the equation 2 (x) + b (y) = c (z) is given. Further, by an elementary approach, we prove that if c = b + 2, then the equation has only the positive integer solution (x, y, z) = (1,1, 1), except for (b, x, y, z) = (89,13,1, 2) and (2 (r) - 1, r + 2,2, 2), where r is a positive integer with r ≥ 2.
منابع مشابه
On the Exponential Diophantine Equation
Let a, b, c be fixed positive integers satisfying a2 + ab + b2 = c with gcd(a, b) = 1. We show that the Diophantine equation a2x+axby+b2y = cz has only the positive integer solution (x, y, z) = (1, 1, 1) under some conditions. The proof is based on elementary methods and Cohn’s ones concerning the Diophantine equation x2 + C = yn. Mathematics Subject Classification: 11D61
متن کاملSome Fourth Degree Diophantine Equations in Gaussian Integers
For certain choices of the coefficients a, b, c the solutions of the Diophantine equation ax+by = cz in Gaussian integers satisfy xy = 0.
متن کاملOn the Diophantine Equation x^6+ky^3=z^6+kw^3
Given the positive integers m,n, solving the well known symmetric Diophantine equation xm+kyn=zm+kwn, where k is a rational number, is a challenge. By computer calculations, we show that for all integers k from 1 to 500, the Diophantine equation x6+ky3=z6+kw3 has infinitely many nontrivial (y≠w) rational solutions. Clearly, the same result holds for positive integers k whose cube-free part is n...
متن کاملUpper Bounds for the Number of Solutions of a Diophantine Equation
We give upper bound estimates for the number of solutions of a certain diophantine equation. Our results can be applied to obtain new lower bound estimates for the L1-norm of certain exponential sums.
متن کاملOn the Exponential Diophantine Equation ( 4 m 2 + 1
Let m be a positive integer. Then we show that the exponential Diophantine equation (4m2 + 1)x + (5m2 − 1)y = (3m)z has only the positive integer solution (x, y, z) = (1, 1, 2) under some conditions. The proof is based on elementary methods and Baker’s method. Mathematics Subject Classification: 11D61
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014